C++ 多线程编程总结
在开发C++程序时,一般在吞吐量、并发、实时性上有较高的要求。 设计C++程序时,总结起来可以从如下几点提高效率:
- 并发
- 异步
- 缓存
下面将我平常工作中遇到一些问题例举一二,其设计思想无非以上三点。
Table of Contents
任务队列
以生产者-消费者模型设计任务队列
生产者-消费者模型是人们非常熟悉的模型,比如在某个服务器程序中,当 user 数据被逻辑模块修改后,就产生一个更新数据库的任务(produce),投递给 I/O 模块任务队列,I/O 模块从任务队列中取出任务执行 sql 操作(consume)。
设计通用的任务队列,示例代码如下:
void task_queue_t::produce(const task_t& task_) {
lock_guard_t lock(m_mutex);
if (m_tasklist->empty()) { //! 条件满足唤醒等待线程
m_cond.signal();
}
m_tasklist->push_back(task_);
}
int task_queue_t::comsume(task_t& task_) {
lock_guard_t lock(m_mutex);
while (m_tasklist->empty()) { //! 当没有作业时,就等待直到条件满足被唤醒
if (false == m_flag) return -1;
m_cond.wait();
}
task_ = m_tasklist->front();
m_tasklist->pop_front();
return 0;
}
1.2 任务队列使用技巧
1.2.1 I/O 与 逻辑分离
比如网络游戏服务器程序中,网络模块收到消息包,投递给逻辑层后立即返回,继续接受下一个消息包。 逻辑线程在一个没有 I/O 操作的环境下运行,以保障实时性。示例:
void handle_xx_msg(long uid, const xx_msg_t& msg){
logic_task_queue->post(boost::bind(&servie_t::proces, uid, msg));
}
注意,此模式下为单任务队列,每个任务队列单线程。
1.2.2 并行流水线
上面的只是完成了 I/O 和 cpu 运算的并行,而 cpu 中逻辑操作是串行的。 在某些场合,cpu 逻辑运算部分也可实现并行,如游戏中用户A种菜和B种菜两种操作是完全可以并行的,因为两个操作没有共享数据。最简单的方式是A、B相关的操作被分配到不同的任务队列中。 示例如下:
void handle_xx_msg(long uid, const xx_msg_t& msg) {
logic_task_queue_array[uid % sizeof(logic_task_queue_array)]->post(
boost::bind(&servie_t::proces, uid, msg));
}
注意,此模式下为多任务队列,每个任务队列单线程。
1.2.3 连接池与异步回调
比如逻辑 service 模块需要数据库模块异步载入用户数据,并做后续处理计算。 而数据库模块拥有一个固定连接数的连接池,当执行 SQL 的任务到来时,选择一个空闲的连接,执行 SQL,并把 SQL 通过回调函数传递给逻辑层。 其步骤如下:
- 预先分配好线程池,每个线程创建一个连接到数据库的连接
- 为数据库模块创建一个任务队列,所有线程都是这个任务队列的消费者
- 逻辑层向数据库模块投递 SQL 执行任务,同时传递一个回调函数来接受 SQL 执行结果
示例如下:
void db_t:load(long uid_, boost::function<void (user_data_t&) func_){
//! sql execute, construct user_data_t user
func_(user)
}
void process_user_data_loaded(user_data_t&){
//! todo something
}
db_task_queue->post(boost::bind(&db_t:load, uid, func));
注意,此模式下为单任务队列,每个任务队列多线程。
2. 日志
本文主要讲 C++ 多线程编程,日志系统不是为了提高程序效率,但是在程序调试、运行期排错上,日志是无可替代的工具,相信开发后台程序的朋友都会使用日志。常见的日志使用方式有如下几种:
- 流式
- printf 格式
logstream << "start servie time[%d]" << time(0) << " app name[%s]" << app_string.c_str() << endl;
logtrace(LOG_MODULE, "start servie time[%d] app name[%s]", time(0), app_string.c_str());
二者各有优缺点,流式是线程安全的,printf 格式格式化字符串会更直接,但缺点是线程不安全。
如果把 app_string.c_str() 换成 app_string (std::string),编译被通过,但是运行期会 crash(如果运气好每次都 crash,运气不好偶尔会 crash)。 我个人钟爱 printf 风格,可以做如下改进:
增加线程安全,利用 C++ 模板的 traits 机制,可以实现线程安全。
示例:
template<typename Arg>
void logtrace(const char* module, const char* fmt, Arg arg) {
boost::format s(fmt);
f % arg;
}
这样,除了标准类型 +std::string 传入其他类型将编译不能通过。 这里只列举了一个参数的例子,可以重载该版本支持更多参数,如果你愿意,可以支持 9 个参数或更多。
为日志增加颜色,在 printf 中加入控制字符,可以再屏幕终端上显示颜色,Linux 下示例:
printf("33[32;49;1m [DONE] 33[39;49;0m")
更多颜色方案参见:
http://hi.baidu.com/jiemnij/blog/item/d95df8c28ac2815cb219a80e.html
每个线程启动时,都应该用日志打印该线程负责什么功能。这样,程序跑起来的时候通过top –H – p pid 可以得知那个功能使用cpu的多少。实际上,我的每行日志都会打印线程id,此线程id非pthread_id,而其实是线程对应的系统分配的进程id号。
3. 性能监控
尽管已经有很多工具可以分析 c++ 程序运行性能,但是其大部分还是运行在程序 debug 阶段。我们需要一种手段在 debug 和 release 阶段都能监控程序,一方面得知程序瓶颈之所在,一方面尽早发现哪些组件在运行期出现了异常。
通常都是使用 gettimeofday 来计算某个函数开销,可以精确到微妙。 可以利用 C++ 的确定性析构,非常方便的实现获取函数开销的小工具。
示例如下:
struct profiler {
profiler(const char* func_name) {
gettimeofday(&tv, NULL);
}
~profiler() {
struct timeval tv2;
gettimeofday(&tv2, NULL);
long cost = (tv.tv_sec - tv.tv_sec) * 1000000 + (tv.tv_usec - tv.tv_usec);
//! post to some manager
}
struct timeval tv;
};
#define PROFILER() profiler(__FUNCTION__)
cost 应该被投递到性能统计管理器中,该管理器定时讲性能统计数据输出到文件中。
4 Lambda 编程
使用 foreach 代替迭代器
很多编程语言已经内建了 foreach,但是 c++ 还没有。所以建议自己在需要遍历容器的地方编写 foreach 函数。
习惯函数式编程的人应该会非常钟情使用 foreach,使用 foreach 的好处多多少少有些,如:
http://www.cnblogs.com/chsword/archive/2007/09/28/910011.html
但主要是编程哲学上层面的。
示例:
void user_mgr_t::foreach(boost::function<void (user_t&)> func_) {
for (iterator it = m_users.begin(); it != m_users.end() ++it) {
func_(it->second);
}
}
比如要实现 dump 接口,不需要重写关于迭代器的代码
void user_mgr_t:dump() {
struct lambda {
static void print(user_t& user) {
//! print(tostring(user);
}
};
this->foreach(lambda::print);
}
实际上,上面的代码变通的生成了匿名函数,如果是 c++ 11 标准的编译器,本可以写的更简洁一些:
this->foreach([](user_t& user) {});
但是我大部分时间编写的程序都要运行在 centos 上,你知道吗它的 gcc 版本是 gcc 4.1.2, 所以大部分时间我都是用变通的方式使用 lambda 函数。
Lambda 函数结合任务队列实现异步
常见的使用任务队列实现异步的代码如下:
void service_t:async_update_user(long uid){
task_queue->post(boost::bind(&service_t:sync_update_user_impl, this, uid));
}
void service_t:sync_update_user_impl(long uid){
user_t& user = get_user(uid);
user.update()
}
这样做的缺点是,一个接口要响应的写两遍函数,如果一个函数的参数变了,那么另一个参数也要跟着改动。并且代码也不是很美观。
使用 lambda 可以让异步看起来更直观,仿佛就是在接口函数中立刻完成一样。示例代码:
void service_t:async_update_user(long uid){
struct lambda {
static void update_user_impl(service_t* servie, long uid){
user_t& user = servie->get_user(uid);
user.update();
}
};
task_queue->post(boost::bind(&lambda:update_user_impl, this, uid));
}
这样当要改动该接口时,直接在该接口内修改代码,非常直观。
5. 奇技淫巧
利用 shared_ptr 实现 map/reduce
Map/Reduce 的语义是先将任务划分为多个任务,投递到多个 worker 中并发执行,其产生的结果经 reduce 汇总后生成最终的结果。
shared_ptr 的语义是什么呢?当最后一个 shared_ptr 析构时,将会调用托管对象的析构函数。 语义和 map/reduce 过程非常相近。 我们只需自己实现讲请求划分多个任务即可。 示例过程如下:
定义请求托管对象,加入我们需要在10个文件中搜索“oh nice”字符串出现的次数,定义托管结构体如下:
struct reducer {
void set_result(int index, long result) {
m_result[index] = result;
}
~reducer(){
long total = 0;
for (int i = 0; i < sizeof(m_result); ++i){
total += m_result[i];
}
//! post total to somewhere
}
long m_result[10];
};
定义执行任务的 worker
void worker_t:exec(int index_, shared_ptr<reducer> ret) {
ret->set_result(index, 100);
}
将任务分割后,投递给不同的 worker
shared_ptr<reducer> ret(new reducer());
int ntask = 10;
for (int i = 0; i < ntask; ++i) {
task_queue[i]->post(boost::bind(&worker_t:exec, i, ret));
}