algorithm

Algorithms + Data Structures = Programs

by Niklaus Wirth

There are three different stages in understanding an algorithms:

  • K: known
  • D: wrote code
  • R: <…> times

Table of Contents

Sorting Algorithms

  • insertion sort: online
  • merge sort
  • quick sort
  • selection sort
    • standard
    • tree (NlgN) (tournament sort)
  • heap sort
  • bubble
  • shell
  • bucket
  • radix
  • count

Data Structures

Array

List

Hash Table

Tree

BST

AVL

RBT

B Tree

B+ Tree

k-d Tree

from collections import namedtuple
from operator import itemgetter
from pprint import pformat

class Node(namedtuple('Node', 'coord left_child, right_child')):
	def __repr__(self):
		return pformat(tuple(self))

def kdtree(points, depth=0):
	try:
		k = len(points[0])
	except IndexError:
		return None
	axis = depth % k
	points.sort(key=itemgetter(axis))
	median = len(points)//2
	return Node(
		location=points[median],
		left_child=kdtree(points[:median], depth+1),
		right_child=kdtree(points[median+1:], depth+1)
	)

Heap

Union-Find Set

并查集是一种树型的数据结构,用于处理一些不相交集合 (Disjoint Sets) 的合并及查询问题。常常在使用中以森林来表示。

集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并。

String

KMP

BM

Trie

not suitable for substring searching

Radix Tree

substring matching, high performance full text search

Suffix Tree

suitable for substring searching

Dynamic Programming

LCS

L[i, j] =

  • 0, i = 0 or j = 0
  • L[i-1, j-1] + 1, i > 0 and j > 0 and a[i] = b[j]
  • max(L[i, j-1], L[i-1, j]), i > 0 and j > 0 and a[i] ≠ b[j]

Algorithm:

for i in range(0, n):
    L[i, 0] = 0
for j in range(0, m):
    L[0, j] = 0

for i in range(1, n):
    for j in range(1, m):
        if a[i] == b[j]:
            L[i, j] = L[i-1, j-1] + 1
        else:
            L[i, j] = max(L[i, j-1], L[i-1, j])
return L[n, m]

Complexity:

  • time: θ(nm)
  • space: θ(n+m)

LIS

O(nlgn)

Knapsack

  • Objects: U = {u1, u2, …, un}
  • Volumes: s1, s2, …, sn
  • Values: v1, v2, …, vn
  • Capacity: C

Algorithm:

for i in range(0, n):
    V[i, 0] = 0
for j in range(0, C):
    V[0, j] = 0

for i in range(1, n):
    for j in range(1, C):
        V[i, j] = V[i-1, j]
        if s[i] <= j:
            V[i, j] = max(V[i, j], V[i-1, j-s[i]] + v[i])
return V[n, C]

Complexity:

  • time: θ(nC)
  • space: θ(C)

Floyd

for k in range(1, n):
    for i in range(1, n):
        for j in range(1, n):
            D[i, j] = min(D[i, j], D[i, k] + D[k, j])

Complexity:

  • time: θ(n3)
  • space: θ(n2)

edit distance

Others

References